miércoles 10 de agosto de 2022

Análisis de Néstor Vidal

La ecuación de Bernoulli

Cuando abrimos una canilla, la columna de agua que sale es más estrecha que la abertura del propio grifo. ¿Por qué? ¿Y qué relación guarda esto con el vuelo de los aviones y las angioplastias?

domingo 12 de junio de 2022
La ecuación de Bernoulli

Por Néstor Vidal*

La relación entre la velocidad y la presión de los fluidos en circulación viene dada por la ecuación de Bernoulli. Ésta determina por qué vuelan los aviones, cómo circula la sangre en el cuerpo y cómo se inyecta el combustible en el motor de los coches. Los fluidos que transitan a gran velocidad crean una baja presión que explica el impulso asociado al ala de una nave y al estrechamiento de un chorro de agua que sale de una canilla. Utilizando este efecto para medir la presión sanguínea, el propio Daniel Bernoulli insertó cánulas directamente en las venas de sus pacientes.

El físico y médico holandés Daniel Bernoulli comprendió que el agua en movimiento genera una baja presión. Cuanto más rápidamente fluye, más baja es la presión. Si imaginamos un tubo de cristal vacío colocado horizontalmente con agua que se bombea por su interior, podremos medir la presión de esa agua insertando un tubo capilar vacío verticalmente en la primera tubería y observando cómo cambia la altura en el tubo de menor tamaño. Si la presión del agua es elevada, el nivel del agua en el tubo capilar aumenta. Si es baja, disminuye. Cuando Bernoulli aumentó la velocidad del agua en el tubo horizontal observó un descenso en la presión del tubo capilar vertical; este descenso en la presión resultó ser proporcional al cuadrado de la velocidad del agua. Así pues, cualquier agua o fluido en movimiento tiene una presión más baja que el agua en reposo. El agua que sale de un grifo tiene una presión baja comparada con el aire inmóvil que la rodea y, por tanto, es absorbida en una columna más estrecha. Esto se aplica a cualquier fluido, desde el agua hasta el aire.

LA CIRCULACIÓN DE LA SANGRE

Por su formación médica, el propio Bernoulli se sentía fascinado por la circulación de la sangre en el cuerpo humano e inventó una herramienta para poder medir la presión arterial. Un tubo capilar que se insertaba en un vaso sanguíneo, fue utilizado durante casi doscientos años para medir la presión sanguínea en los pacientes vivos. Debió de resultar un alivio para todos los afectados cuando se descubrió un método menos invasivo.

Igual que el agua en una cañería, la sangre arterial es bombeada por el corazón con un gradiente de presión que se establece a lo largo de la longitud del vaso. Si una arteria se estrecha, la velocidad de la sangre que circula por el estrechamiento aumenta de acuerdo con la ecuación de Bernoulli. Si el vaso es la mitad de estrecho, la sangre que circula por su interior es cuatro veces más rápida (dos al cuadrado). Esta aceleración del flujo sanguíneo a través de arterias con estrechamientos puede ocasionar problemas. En primer lugar, si su velocidad es lo bastante rápida, el flujo puede hacerse turbulento y producirse remolinos. Una turbulencia cerca del corazón produce soplos cardíacos con un sonido característico que los médicos reconocen. Además, el descenso de presión en el área limitada puede absorber la fina pared arterial, agravando aún más el problema. Si la arteria se expande, mediante una angioplastia, el volumen del flujo aumentará de nuevo y todo volverá a su cauce normal.

IMPULSO

El descenso en la presión con la velocidad del fluido tiene otras consecuencias importantes. Los aviones vuelan porque las ráfagas de aire que cortan las alas de este también producen un descenso de la presión. Las alas de la nave tienen una forma tal que la curvatura del borde superior es mayor que la del borde inferior. Como el recorrido es más largo encima de la parte superior, el aire se mueve más rápido en esa área, de forma que la presión es más baja en ese punto que en la parte inferior. La diferencia de presión impulsa al ala y permite volar al avión, pero si éste pesado tiene que moverse muy rápido para ganar la suficiente diferencia de presión que le proporcione el impulso necesario para despegar. 

Un efecto similar explica cómo se inyecta el combustible en el motor de un coche a través del carburador. Una tobera especial, llamada tubo de Venturi (un amplio tubo con un estrangulamiento en medio), produce una baja presión del aire, limitando y liberando a continuación el flujo, el cual absorbe el combustible y junto con una mezcla de aire, lo distribuye al motor.

DANIEL BERNOULLI (1700-1782)

El físico holandés Daniel Bernoulli recibió una formación en medicina para cumplir con los deseos de su padre, pero en realidad él adoraba las matemáticas. Su padre Johan era matemático, pero trató de convencer a Daniel para que no siguiera sus pasos, y compitió con su hijo a lo largo de toda su carrera. Bernoulli concluyó sus estudios médicos en Basilea, pero en 1724 se convirtió en profesor de matemáticas en San Petersburgo.

Trabajó con el matemático Leonhard Euler en fluidos, estableció la relación entre velocidad y presión experimentando con tubos que, finalmente, fueron utilizados por los médicos para medir la presión sanguínea insertándolos en las arterias. Bernoulli se percató de que el flujo y la presión de los fluidos estaban relacionados con la conservación de la energía y demostró que si la velocidad aumenta la presión desciende. Daniel obtuvo una plaza para regresar a Basilea en 1733, pero Johan todavía estaba celoso de los éxitos de su hijo. Odiaba tenerle en el mismo departamento e incluso le prohibió volver a su casa. A pesar de todo, Daniel dedicó a su padre su obra Hidrodinámica, escrita en 1734. Pero el Bernoulli mayor robó las ideas de Daniel, publicando un libro similar llamado Hidráulica al cabo de poco tiempo. Daniel, trastornado por este plagio, volvió a la medicina y la ejerció durante el resto de su vida. 

CONSERVACIÓN

Daniel Bernoulli llegó a estas conclusiones pensando en la conservación de la energía aplicada a los fluidos. Los fluidos, incluyendo los líquidos y el aire, son sustancias continuas que pueden deformarse constantemente. Pero tienen que seguir las leyes básicas de la conservación, no sólo de la energía, sino también de la masa y el momento. Dado que cualquier fluido en movimiento siempre está reordenando sus átomos, éstos tienen que seguir las leyes del movimiento enunciadas por Newton y otros. Así pues, en la descripción de cualquier fluido, los átomos no se pueden crear, ni destruir, sino que se mueven de un lado a otro. Hay que tener en cuenta sus mutuas colisiones y que cuando chocan, la velocidad es predicha por la conservación del momento lineal.

Además, la cantidad total de energía adquirida por todas las partículas tiene que ser fija y sólo puede trasladarse dentro del sistema. En la actualidad, estas leyes físicas se utilizan para trazar un modelo del comportamiento de los fluidos tan diverso como los patrones meteorológicos, las corrientes oceánicas, la circulación de los gases en las estrellas y las galaxias, y la circulación de fluidos en nuestro cuerpo. Las predicciones meteorológicas se apoyan en los modelos realizados por ordenador de los movimientos de muchos átomos junto con la termodinámica para explicar los cambios en el calor mientras los átomos se mueven y cambia la densidad, la temperatura y la presión regionalmente. Nuevamente, los cambios en la presión y la velocidad están relacionados, ya que hacen que los vientos circulen de alta a baja presión. Las mismas ideas se utilizaron para elaborar el modelo de la trayectoria del huracán Katrina cuando se precipitó contra la costa americana en el año 2005.

Las leyes de la conservación están encarnadas en una serie de nuevas ecuaciones llamadas ecuaciones de Navier-Stokes, por los científicos que las desarrollaron. También tienen en cuenta los efectos de la viscosidad de los fluidos, su adherencia, debido a las fuerzas entre las moléculas que los componen. Al ocuparse de la conservación más que de la predicción absoluta, estas ecuaciones analizan los cambios y la circulación de las partículas del fluido por término medio en lugar de seguir el número total de átomos. Pese a que las ecuaciones de Navier-Stokes de la dinámica de fluidos son lo bastante detalladas para explicar muchos sistemas complejos, como los fenómenos climáticos incluyendo la corriente El Niño y la formación de los Huracanes, no son capaces de describir flujos muy turbulentos, como la estrepitosa caída de una cascada o el chorro de una fuente. La turbulencia es el movimiento aleatorio del agua agitada, que se caracteriza por torbellinos e inestabilidad. Se establece cuando el flujo es muy veloz y desestabilizado. Como la turbulencia es tan difícil de describir matemáticamente, todavía se ofrecen importantes premios en metálico para los científicos que den con nuevas ecuaciones capaces de describir estas situaciones extremas.

«Las máquinas voladoras más pesadas que el aire son imposibles. No tengo el menor ápice de fe en la navegación aérea salvo los globos, ni en las expectativas de buenos resultados de cualquiera de las que oímos hablarLord Kelvin, 1895.

 

EN SINTESIS: ARTERIAS Y AERODINÁMICA

 

“Centro de Investigación Forense y Nuevas Tecnologías”

Te puede interesar
Últimas noticias
MÁS VISTAS